Принцип работы двигателя самолета

Уборка — выпуск шасси

Кроме тормозов и управления носовой стойкой с шасси связана ещё одна важная функция — уборка/выпуск шасси. Управление уборкой-выпуском шасси в нормальном режиме осуществляется с помощью соответствующей ручки на приборной панели.

Вверх — убрать, вниз — выпустить. Кстати, можно не бояться случайно «сложить» стойки шасси, когда самолёт стоит на земле — в современных авиалайнерах предусмотрена блокировка от таких действий, когда шасси «обжаты» — амортизаторы находятся в сжатом состоянии под действием веса ЛА.

Для улучшения аэродинамических свойств ЛА ниши, в которых размещаются убранные шасси, закрываются створками, поэтому процедура нормальной уборки шасси выглядит примерно так:

  1. Вычислитель снимает замки закрытого положения створок и подаёт команду на открытие створки
  2. Створки полностью открыты и зафиксированы в открытом положении. Соответствующие датчики сообщают об этом вычислителю
  3. Вычислитель открывает замки выпущенного положения стоек шасси и начинает их уборку.
  4. Стойки полностью убраны и зафиксированы в закрытом положении. Соответствующие датчики сообщают об этом вычислителю
  5. Вычислитель открывает замки открытого положения створок и начинает их закрывать
  6. Створки полностью закрыты и зафиксированы в закрытом положении. Вычислитель фиксирует признак окончания уборки шасси

Весь процесс занимает 20-40 секунд. Если в процессе что-то идёт не так, то система прерывает процесс, т.к. есть вероятность что-то сломать. Нормальный выпуск шасси происходит в обратном порядке.

На случай неисправностей в системе уборки-выпуска предусмотрен особый порядок выпуска шасси — аварийный выпуск. Аварийный выпуск активируется кнопкой аварийного выпуска, расположенной под колпачком рядом с ручкой уборки-выпуска шасси. При аварийном выпуске средствами, не зависящими от вычислителя системы уборки-выпуска шасси, снимаются замки убранного положения стоек шасси и створок. Шасси вываливается под собственным весом. Массы каждой из стоек достаточно чтобы выломать створку, даже если та не откроется сама. На замки нижнего положения стойки также встают под действием собственного веса.

Капот

Вид спереди на открытые заслонки капота

Вид сзади на открытые заслонки капота

Если самолет оборудован регулируемыми закрылками капота:

  • Управление положением заслонки капота — Заслонки капота открываются во время операций с высокой мощностью / низкой воздушной скоростью, таких как взлет, чтобы максимизировать объем охлаждающего воздушного потока через охлаждающие ребра двигателя.
  • Датчик температуры головки цилиндров — показывает температуру всех головок цилиндров или в одной системе CHT, самую горячую головку. Датчик температуры головки цилиндров имеет гораздо более короткое время отклика, чем датчик температуры масла, поэтому он может быстрее предупредить пилота о возникающих проблемах с охлаждением. Перегрев двигателя может быть вызван:

    1. Слишком долгая работа на высокой мощности.
    2. Плохая техника наклона.
    3. Слишком сильное ограничение объема охлаждающего воздуха.
    4. Недостаточная подача смазочного масла к движущимся частям двигателя.

Конструктивные особенности поршневых двигателей

Авиационные поршневые двигатели имеют большое число цилиндров (от 5 до 24), хорошие экономические характеристики, способны работать в перевёрнутом состоянии и обладают большей надёжностью.

Способ охлаждения – воздушное, или жидкостное — определяет конструкцию двигателя.

В двигателях с жидкостным охлаждением цилиндры объединяют по 4-6 штук в блоки (ряды), они имеют общую рубашку, внутри которой циркулирует охлаждающая жидкость. В одном двигателе может быть несколько (2, 4 или 6) блоков, размещаемых вдоль оси двигателя.

В двигателях с воздушным охлаждением цилиндры располагают в плоскости, перпендикулярной оси двигателя, по 5-9 штук; вместе эти цилиндры напоминают звезду. У мощных двигателей могло быть до четырех звёзд (до 20-24 цилиндров). Цилиндры охлаждаются потоком встречного воздуха, для более эффективного охлаждения наружная поверхность корпусов цилиндров делается ребристой.

Помимо звездообразных двигателей, нашли свое применение в авиастроении и оппозитные двигатели[]. Их часто устанавливают на легкие и небольшие самолеты, так как их мощности вполне достаточно для полета на высоких скоростях.

Оппозитный поршневой двигатель П-020

К 1942 году поршневые моторы практически исчерпали свои возможности. Пропеллеры по своей конструкции так же достигли высшей точки эффективности.[] Увеличение числа цилиндров, применение нагнетателей, сложных систем впрыска воды, спирта или химикатов в топливо усложняло конструкцию и давало лишь небольшой эффект.

***

Одним из наиболее удивительных поршневых авиадвигателей, изготовленных во время Второй мировой войны, был американской опытный звездообразный двигатель жидкостного охлаждения «Райт R-2160 Торнадо», в котором 42 цилиндра располагались в семь рядов в шести радиальных блоках. По замыслу конструкторов, «Торнадо», имевший небольшой диаметр, позволял авиаконструкторам разрабатывать фюзеляжи с небольшим поперечным сечением.

Однако «Торнадо» требовалась довольно тяжелая и сложная система радиаторов охлаждающей жидкости, которая сводила на нет любое аэродинамическое преимущество от малого поперечного сечения двигателя.

Котельников В. Р., Хробыстова О. В., Зрелов В. А., Пономарёв В. А. Двигатели боевых самолетов России /Под общ. ред. В. В. Горошникова. — Рыбинск : Медиарост, 2017. -616 с.: илл.

  1. Jean Joseph Etienne Lenoir (1822-1900). []
  2. В настоящее время — Запорожье. []
  3. Лидером в разработке авиационных двигателей с жидкостным охлаждением была Германия []
  4. В постройке двигателей с воздушным охлаждением лидером была Франция []
  5. Поршневой ДВС, в котором угол между рядами цилиндров составляет 180 градусов, а противостоящие поршни двигаются зеркально по отношению друг к другу и одновременно достигают верхней мёртвой точки. []
  6. Пропеллер, или винт проектируется под конкретный двигатель. []

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Авиационные двигатели

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными

, или атмосферными. А вторая группа получила названиеракетных . Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Ракетные авиа двигатели

Первые ракетные авиа двигатели появились в начале 40 годов прошлого столетия в Германии, когда немцы всеми усилиями пытались создать быстрый самолёт, который мог бы принести им победу во Второй мировой войне. Тем не менее, стоит отметить, что наука в те годы не позволяла совершить точный расчёт некоторых параметров, поэтому проект так и не был реализован. Впоследствии ракетные авиа двигатели испытывались исключительно с возможностью их применения для разгона самолётов в стратосфере, но применимость их весьма ограничена, и потому на сегодняшний день они практически не используются.

Основным недостатком ракетного авиационного двигателя является практически полное отсутствие управляемости на высоких скоростях.

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

Текущие двигатели

Самолеты всего мира Джейн

. 2005–2006 гг.

ПроизводительСтранаОбозначениеСухая масса (кг)Взлетная мощность (кВт)Заявление
DEMCКитайская Народная РеспубликаWJ5E7202130Харбин SH-5 , Сиань Y-7
Europrop InternationalЕвросоюзTP400-D618008203Airbus A400M
General ElectricСоединенные ШтатыCT7 -5A3651294
General ElectricСоединенные ШтатыCT7 -93651447CASA / IPTN CN-235 , Let L-610 , Saab 340 , Сухой Су-80
General ElectricСоединенные Штаты ЧехияСерия H80200550–625Молочница Модель 510 , Let 410NG , Let L-410 Turbolet UVP-E, CAIGA Primus 150 , Nextant G90XT
General ElectricСоединенные ШтатыT64 -P4D5382535Aeritalia G.222 , de Havilland Canada DHC-5 Buffalo , Kawasaki P-2J
HoneywellСоединенные ШтатыTPE331 серии150–275478–1650Aero / Rockwell Turbo Commander 680/690/840/960/1000 , Антонов Ан-38 , Ayres Thrush , BAe Jetstream 31/32 , BAe Jetstream 41 , CASA C-212 Aviocar , Cessna 441 Conquest II, Dornier 228 , Fairchild Swearingen Metroliner , General Atomics MQ-9 Reaper , Grum Ge man , Mitsubishi MU-2 , North American Rockwell OV-10 Bronco , Piper PA-42 Cheyenne , RUAG 228NG , Short SC.7 Skyvan , Short Tucano , Swearingen Merlin , Fairchild Swearingen Metroliner
HoneywellСоединенные ШтатыLTP 101-700147522Пневматический трактор АТ-302 , Piaggio P.166
ККБМРоссияНК-12МВ1900 г.11033Антонов Ан-22 , Туполев Ту-95 , Туполев Ту-114
ПрогрессУкраинаТВ3-117 ВМА-СБ25601864 г.Антонов Ан-140
КлимовРоссияТВ7-117 С5302100Ильюшин Ил-112 , Ильюшин Ил-114
ПрогрессУкраинаAI20 M10402940Антонов Ан-12 , Антонов Ан-32 , Ильюшин Ил-18
ПрогрессУкраинаAI24 T6001880 г.Антонов Ан-24 , Антонов Ан-26 , Антонов Ан-30
LHTECСоединенные ШтатыLHTEC T8005172013AgustaWestland Super Lynx 300 (CTS800-4N), AgustaWestland AW159 Lynx Wildcat (CTS800-4N), Ayres LM200 Loadmaster (LHTEC CTP800-4T) (самолет не построен), Sikorsky X2 (T800-LHT-801), TAI / AgustaWestland T- 129 (CTS800-4A)
ОМКБРоссияТВД-202401081Антонов Ан-3 , Антонов Ан-38
Пратт и Уитни КанадаКанадаСерия ПТ-6149–260430–1500Воздушный тягач AT-502 , воздушный тягач AT-602 , воздушный тягач AT-802 , Beechcraft Model 99 , Beechcraft King Air, Beechcraft Super King Air , Beechcraft 1900 , Beechcraft T-6 Texan II , Cessna 208 Caravan , Cessna 425 Corsair / Conquest I , de Havilland Canada DHC-6 Twin Otter , Harbin Y-12 , Embraer EMB 110 Bandeirante , Let L-410 Turbolet , Piaggio P.180 Avanti , Pilatus PC-6 Porter , Pilatus PC-12 , Piper PA-42 Cheyenne , Piper PA-46-500TP Meridian , Shorts 360 , Daher TBM 700 , Daher TBM 850 , Daher TBM 900 , Embraer EMB 314 Super Tucano
Пратт и Уитни КанадаКанадаPW1204181491ATR 42-300/320
Пратт и Уитни КанадаКанадаPW1214251603ATR 42-300/320, Bombardier Dash 8 Q100
Пратт и Уитни КанадаКанадаPW123 C / D4501603Bombardier Dash 8 Q300
Пратт и Уитни КанадаКанадаPW126 C / D4501950BAe ATP
Пратт и Уитни КанадаКанадаPW1274812051ATR 72
Пратт и Уитни КанадаКанадаPW150 А7173781Bombardier Dash 8 Q400
PZLПольшаTWD-10B230754PZL M28
РКБМРоссияТВД-1500С2401044Сухой Су-80
Rolls-Royceобъединенное КоролевствоДротик Mk 5365691700Avro 748 , Fokker F27 , Vickers Viscount
Rolls-Royceобъединенное КоролевствоТайн 215694500Aeritalia G.222 , Breguet Atlantic , Transall C-160
Rolls-Royceобъединенное Королевство250 -B1788,4313Fuji T-7 , Britten-Norman Turbine Islander , O&N Cessna 210 , Soloy Cessna 206 , Propjet Bonanza
Rolls-Royceобъединенное КоролевствоAllison T56828–8803424–3910P-3 Orion , E-2 Hawkeye , C-2 Greyhound , C-130 Hercules
Rolls-Royceобъединенное КоролевствоAE2100 A715,83095Saab 2000
Rolls-Royceобъединенное КоролевствоAE2100 Дж7103424ShinMaywa US-2
Rolls-Royceобъединенное КоролевствоAE2100 D2, D37023424Alenia C-27J Spartan , Lockheed Martin C-130J Super Hercules
РыбинскРоссияТВД-1500В2201156
СатурнРоссияТАЛ-34-1178809
TurbomecaФранцияАрриус 1D111313Socata TB 31 Омега
TurbomecaФранцияArrius 2F103376
УолтерЧехияСерия M601200560Let L-410 Turbolet , Aerocomp Comp Air 10 XL , Aerocomp Comp Air 7 , Ayres Thrush , Dornier Do 28 , Lancair Propjet , Let Z-37T , Let L-420 , Мясищев M-101T , PAC FU-24 Fletcher , Progress Rysachok , ПЗЛ-106 Крук , ПЗЛ-130 Орлик , СМ-92Т Турбо Финист
УолтерЧехияM602 A5701360Пусть L-610
УолтерЧехияM602 B4801500

Теперь коснемся ТРДД

Именно они устанавливаются на современных «Эйрбасах» и «Боингах». Принцип их работы не отличается от принципа работы ТРД. Но конструктивно они сложнее, а их КПД выше.

Отличие заключается в том что трдд имеет два контура — внутренний и внешний.

Внутренний контур конструктивно такой же как и у TРД. Внешний контур не имеет камера сгорания и турбины — это канал с соплом в конце. Компрессор расположен после входного устройства и обслуживает оба контура.

Воздух проходит через компрессор низкого давления и делится на 2 потока. Один поток идёт по внутреннему контуру, где происходит тоже самое, что и в TРД. Второй поток  идёт во внешний контур. При этом происходят только гидравлические потеря энергии воздуха (трение). Затем воздух попадает в сопло внешнего контура и создает мощную тягу (до 80% всей тяги двигателя).

Главной характеристикой ТРДД является степень двухконтурности — это отношение расхода воздуха во внутреннем контуре, к расходу воздуха во внешнем контуре. Это отношение может быть больше единицы или меньше.

Если это отношение больше 2-х единиц, то такие двигатели называет турбовентиляторными.

Самые современные двигатели имеют отношение в 12 единиц.

В настоящее время больше используются ТРДД. Они более эффективны экономичны.  Широко применяются для  истребителей-перехватчиков и для гигантских коммерческих и военно-транспортных самолетов.

Особенности турбовинтовых двигателей

После турбины часть энергии газа направляется на вращение компрессора, а другая часть через редуктор на вращение винта для создания тяги. Только десятая часть оставшейся энергии превращается в реактивную тягу, проходя через сопло.

Редуктор служит для того, чтобы понизить обороты, передаваемые на винт. Дело в том, что турбина вращается с частотой до 10 000 оборотов в минуту, а на винт нужно подавать не более 1 500 оборотов в минуту. К тому же винт обладает достаточно большой массой.

Имеются турбовинтовые двигатели с другой конструкцией. На них устанавливается свободная турбина. Её размещают за турбиной компрессора. Она имеет только газодинамическую связь с турбиной компрессора, поэтому и называется свободной. Свободная турбина установлена на одном валу с редуктором и винтом. В остальном принцип работы тот же. Такие ТВД можно использовать на земле как вспомогательные, при этом, не приводя в движение винт. Широко используются в транспортной и гражданской авиации.

Особенности турбовальных двигателей (ТВД)

Такими двигателями оснащаются современные вертолеты. Конструктивно они похожи на турбовинтовые двигатели. У них есть компрессор, камера сгорания, турбина компрессора, за ней расположено свободная турбина. Она не имеет механической связи со всей предыдущей конструкцией — только газодинамическую.

Обороты несущего винта очень низкие. Также от главного редуктора идёт вал, который через концевой и хвостовой редуктора передает вращение на хвостовой винт. Какие схемы используются на вертолётах конструкции Миля. На Камовских вертолётах применяется хаосная схема — там отсутствует хвостовой винт, но имеется два несущих винта. Один винт вращается по часовой стрелке, другой — против часовой.

Мы коснулись только авиационных двигателей, которые массово применяются в авиации на сегодняшний день. Имеются и другие конструкции, которые по разным причинам почти не используются. Ещё имеется класс ракетных двигателей.

Воздушный винт

Благодаря воздушному винту создается тяга, но у каждого винта есть свои ограничения в скорости. Самая идеальная скорость вращения винта является 750-1,5 тысячи оборотов в минуту, в данной частоте уровень коэффициента полезного действия винта самый большой, но если скорость заходит за эти пределы, КПД начинает значительно падать.

В тоже время винт начинает приносить не повышение скорости, а наоборот начинает работать как тормоз. Такую особенность еще называют как «эффект запирания».

Такой эффект происходит из-за того что одна часть лопастей начинает набирать завышенные обороты и тем самым превышает скорость звука, из-за чего двигатель начинает неправильно работать. Такой эффект сработает также если лопастям увеличить их в диаметре, так как чем лопасть длиннее, тем выше скорость потока на концах лопастей.

Явление отдачи

Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Малые ГТД области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии. — Мощность микротурбин составляет 30-1000 кВт; — объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить: — широкий диапазон нагрузок; — низкая вибрация и уровень шума; — работа на различных видах топлива; — небольшие габариты; — низкий уровень эмиссии выхлопов.

Отрицательные моменты: — сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием); — силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности

Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков. И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350

КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000

И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

https://youtube.com/watch?v=yjla0e9xTmk

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

Поделитесь в социальных сетях:ВКонтактеFacebookTwitter
Напишите комментарий