Почему самолеты не машут крыльями?

4 детали авиалайнера, от которых зависят летные качества

Летающие машины отличаются от обычных очень сложными конструкциями, предусматривающими каждую мелочь. И кроме очевидных деталей, на возможности и характеристики передвижения влияют и другие части – всего собрали 4 основных.

1. Крыло. Если при отказе двигателя можно долететь до ближайшего аэродрома на втором, а при неполадках сразу в двух – приземлиться с опытом пилота, без крыла от пункта отправления не отдалишься. Не будет его – не будет необходимой подъемной силы. В единственном числе о крыле говорят не случайно. Вопреки распространенному мнению, оно у самолета одно. Этим понятием обозначают всю плоскость, расходящуюся в обе стороны от борта.

Поскольку это главная деталь, отвечающая за нахождение в воздухе, ее конструкции уделяется очень много внимания. Форму строят по точным расчетам, выверяют и испытывают. Кроме того, крыло способно выдерживать огромные нагрузки, чтобы не ставить под угрозу главное – безопасность людей.

2. Закрылки и предкрылки. Большее количество времени крыло самолета имеет обтекаемую форму, но на взлете и посадке на нем появляются дополнительные поверхности. Выпускаются закрылки и предкрылки для того, чтобы увеличить площадь и справиться с действующими на аппарат силами во время серьезных нагрузок в начале и конце пути. При приземлении тормозят лайнер, не позволяют ему упасть слишком быстро, а на подъеме помогают удержаться в воздухе.

3. Спойлеры. Появляются на верхней части крыла в моменты, когда требуется уменьшить ПС. Играют роль своеобразного тормоза. Эта и детали из предыдущего пункта представляют собой механизацию, которой пилоты управляют вручную.

4. Двигатель. Винтовые тянут машину за собой, а реактивные «толкают» вперед.

Пусть еще в начале прошлого века в идею создать летающий транспорт мало кто верил, в наши дни самолеты ни у кого не вызывают удивления. Хотя в принципах их передвижения разбираются единицы – конструкции аппаратов, физика полетов кажутся слишком сложными и рождают массу заблуждений. Но рядовому пассажиру знать подобное и не обязательно. Главное, запомнить, что возможности каждой модели лайнеров просчитаны, и повторить судьбу Икара возможно лишь в редких случаях.

Рейтинг: (голосов: 4, средний: 5 из 5)

Сохранить себе эту страницу:

Почему самолет поднимается в воздух — суть принципа

Понятно, что самолету для взлета нужно приобрести скорость. Подъемная сила зависит от следующих основных факторов:

  • формы крыльев летательного аппарата;
  • мощности двигателя;
  • угла атаки крыла;
  • скорости набегающего потока;
  • плотности воздуха (может меняться от температуры).

Классическое крыло снизу плоское, прямое, а сверху слегка выпуклое и объёмное. Это создает разницу давлений, из-за чего лайнер и поднимается в воздух. Чтобы взлететь, машине необходимо компенсировать силу тяжести за счёт подъемной, противопоставив ее сопротивлению воздуха. Достичь этого можно также благодаря увеличению скорости набегающего потока, т.е. разгону самолета.

Набегающий поток обтекает крыло сверху и снизу. Воздуху приходится преодолевать большее расстояние над крылом, чем под ним. Таким образом молекулы воздуха под крылом располагаются плотнее. Из-за этого образуется разница давлений и появляется подъемная сила. Чем сильнее набегающий поток – тем больше подъемная сила. Крыло расположено к фюзеляжу под углом, что так же облегчает взлет.

Советский мускулолёт, который почти взлетел

После революции к махолетам не возвращались длительное время. Только в 1936 году Осавиахим провёл успешные стендовые испытания пилотируемого орнитоптера с ручным приводом (мускулолета) П.И. Смирнова, в ходе стендовых испытаний которого пилот М.И. Чекалин скользил по тросу с горы на планерной станции.

Действительно удачной стала конструкция Б.И. Черановского, который в 1921, 1934 и 1935 годах проводил опыты по полётам на орнитоптерах-планёрах.

Его идеи легли в основу первого научно проработанного пилотируемого планера-орнитоптера на мускульной тяге БИЧ-18 с предельно облегченным планером, построенного в 1936-1937 годах при поддержке ОСОАВИАХИМа.

Архивные фото орнитоптера Черановского не блещут качеством,

Планер был выполнен в виде биплана с двумя подвижными крыльями, которые приводились в движение посредством тяг при действии пилота на подвесные педали. Крепление крыльев к фюзеляжу осуществлялось с помощью специальных шарниров, верхние крылья были снабжены элеронами. Хвостовое оперение выбрали обычное, что позволило сконцентрировать все управление в одной ручке.

Конструкция должна была при маховых движениях крыльев должно было препятствовать колебаниям фюзеляжа.

Аппарат массой всего 72 кг (с пилотом — 130 кг) получил размах крыла 7 м, удлинение при горизонтальном положении крыльев — 7 при общей их площади в 8 квадратных метров. Таким образом, нагрузка на несущую поверхность составила смешные даже по меркам авиации того периода 13 кг/м2.

Испытывался БИЧ-18 по специально разработанной М.К. Тихонравовым программе, предусматривавшей испытания его сначала как планера, а затем как орнитоптера.

Четыре первых полета БИЧ-18 прошли 10 августа 1937 на аэродроме в подмосковном поселке Тайнинка. Аппарат выходил при помощи резинового амортизатора на высоту 7-10 м. Первые два планирующих полета без взмахов нижнего крыла орнитоптер совершил на расстояние 120-130 м. В четвертом полете пилот сделал 6 взмахов и пролетел 430 м на высоте 7-10 м.

Всего было совершено около 150 полетов. Заметно было небольшое увеличение дальности полета при взмахах крыльев.

Аппарат Черановского стал первым успешным махолетом

Последующие исследования БИЧ-18 при помощи дыма показали, что толстые несущие крылья планера не создавали тяги при взмахах, поскольку Черановский считал, она будет появляться за счет деформации крыла. Однако на практике этого не произошло.

Поэтому позднее были спроектированы и построены «гибкие» крылья такой же формы и площади, которые при попытке планирующего полета показали невозможность применения: подъемная сила не появилась, зато на лицо были признаки флаттера.

Так вполне успешный проект остался в истории.

Будущее машущего полёта: Airbas и другие

Комбинированный движитель орнитоптера Делоуриера позволил аппарату взлететь

Несмотря на выводы теории и множество неутешительных экспериментов, разработки мускульных и других махолетов продолжаются.

В 2002 году появились сообщения, что американский конструктор Джеймс Делоуриер построил пилотируемый махолет, полет которого состоялся только в 2006, после того, как аппарат оснастили вспомогательным реактивным двигателем.

В рамках проекта Human-Powered Ornithopter аэрокосмического института университета Торонто (UTIAS) при помощи студентов из университетов Пуатье и Делфта в 2010 совершил полёт аппарат Snowbird, который стал первым успешным пилотируемым махолётом на мускульной тяге, способным на устойчивый горизонтальный полёт.

Сверхлёгкий Snowbird так же способен перевозить человека

Аппарат весом 42 кг получил размах крыльев 32 м и был выполнен только из углеволокна, полимеров и бальсы — легкой авиационной древесины.

Длинные гибкие крылья приводятся в движение силами пилота; для этого используются тросы. Управление взмахами осуществлялось автоматической упругой конструкцией, использующей только комбинацию аэродинамических и инерционных сил.

Аппарат разогнали с помощью автомобиля-буксировщика, после чего Snowbird полетел со стабильной скоростью и высотой, преодолев за 19,3 сек расстояние в целых 145 метров.

Более удачным оказался проект того же технологического университета Делфта DelFly Explorer: крошечный махолёт массой всего 20 грамм с размахом крыльев в 28 сантиметров не только летает 9 минут без остановки, но и умеет самостоятельно ориентироваться в воздухе, избегая столкновений с преградами.

Впрочем, аналогичный миниатюрный робот-махолёт американской компании AeroVironment размером с колибри в 2009 и вовсе научился выполнять различные фигуры высшего пилотажа, показав способность к зависанию и маневрированию с высокой точностью.

Полностью повторить движение птицы удалось только на малых моделях

Ещё дальше пошли разработчики орнитоптера проекта FlappingFlight под собственным названием Park Hawk научили полностью повторять движения живой птицы, меняя высоту, скорость и направление полета с помощью интенсивности взмаха крыльями.

Наконец, авиастроительный концерн Airbus в 2019 провёл испытания прототипа беспилотного самолёта под названием AlbatrossOne с несущими поверхностями, на которые инженеров вдохновило крыло альбатроса: самолёт получил подвижные законцовки, способные зафиксироваться при необходимости.

Подвижная часть занимает около трети крыла. Конструкция реагирует на турбулентность и порывы ветра, улучшает аэродинамические свойства, снижает нагрузку на фюзеляж.

Концепт движущегося крыла оказался полезен для самолётов. Результаты от Airbus скоро узнаем

Испытания прошли успешно — теперь компания собирается внедрить идею в серийных пассажирских лайнерах, повысив устойчивость полета и в очередной раз снизив удельный расход топлива.

Поэтому, хотя мускульные орнитоптеры для человека так и не вошли в обиход, идеи русских конструкторов остаются живее всех живых, возрождаясь в новых проектах для новых, ранее невиданных сфер применения.

Кто знает, возможно уже через пару десятков лет именно машущие крыльями дроны заменят привычные нестабильные квадрокоптеры, беспилотные вертолеты. Да и на больших самолетах мы их точно увидим ещё не один раз.

iPhones.ru

Как копирование полёта птицы привело к созданию спутников, самолетов и готовится изменить современную авиацию.

Реактивные потоки

Воздушные потоки, которые принято называть реактивными, – это струйные потоки воздуха, образующиеся на большой высоте. Другое их название «западные ветра». На генерацию потоков влияют такие условия, как вращение Земли и температура воздуха. Область их зарождения – граница между стратосферой и тропосферой, которую принято называть «тропопаузой». Расстояние от нее до земли от 3,7 до 7 километров.

Именно здесь формируется погода всей планеты. Струйные потоки имеют достаточную силу зимой, в это время скорость достигает 170 километров в час. В этот период разница межу теплыми и холодными массами воздуха достигает своего максимума. Размеры потоков грандиозны. В длину они достигают тысячи километров, в ширину сотни километров, толщина до двух километров.

Почему птицы сталкиваются с самолетами

Вообще, птицы не летают высоко. Большинство столкновений происходят на высоте ниже 150 метров — то есть как раз при взлете или посадке. Скорость самолета в этот момент ниже, чем на высоте, а быстрые маневры уклонения осуществить трудно. Исход по большей части зависит от того, в какую часть самолета бьется птица.

Наибольшую опасность представляет попадание птицы в двигатель. По стандартам безопасности крупные двигатели должны выдерживать столкновение с птицей весом менее 3,5 кг без опасного и быстрого выброса острых осколков лопастей из двигателей. Фактически большинство двигателей могут проглотить птицу и лишь немного повредить лопасти. Тем не менее это тоже является повреждением: а если птица попадется крупнее, столкновение с ней может вызвать отказ двигателя. Лопасти начнут ломаться одна за другой, что вызовет пожар.

Так выглядит двигатель с повреждениями.

Пилоты могут потушить пожар в двигателе и полностью отключить его, чтобы затем вернуться в аэропорт вылета (если инцидент произошел во время взлета) или завершить посадку с одним работающим двигателем. Все пилоты обучены управлением самолетом с одним двигателем, хотя это очень сложно: приходится переходить полностью на ручные контроллеры и совершать визуальный заход на посадку. Не так давно самолет японских авиалиний был вынужден совершить экстренную посадку в Нью-Йорке, потому что птица ударила в самолет; другой самолет был вынужден вернуться в аэропорт Кардиффа в Уэльсе после того, как птица попала в двигатель.

Подборка видеороликов, где самолеты сталкиваются с птицами

За счет чего взлетает, поднимается в воздух самолет: способы взлета

Обеспечить конкретную скорость для взлета самолета можно несколькими способами:

  • Взлет летательного аппарата с тормозов – самый распространенный способ. Двигатели самолета раскочегаривают до требуемой скорости при удержании самолета на тормозах.
  • Как только достигается нужный показатель, летательный аппарат спускается с тормозов и приступает к ускоренному разбегу.


Распространено

  • Взлет самолета с промежуточным торможением на взлетной полосе – скорость набирается при разбеге по длинной полосе.
  • Взлет в период выруливания на полосу – на аэродроме с ограниченным количеством свободного пространства отрыв самолета производится сходу, что позволяет ускорить взлет и задействовать минимум взлетной полосы.
  • Взлет при помощи трамплинов и систем для торможения колес – применяется для взлета боевых самолетов с поверхности авианосцев. Для создания мощной тяги самолеты оснащаются ракетными двигателями.
  • Взлет по вертикали – применяется для боевой техники на ограниченном взлетном пространстве.


Вертикальный

Каждый самолет взлетает по четко прописанному инструктажу, в котором указаны скорость отрыва, допустимая масса при взлете, уровень шума и другие показатели.

И всё-таки они машут!

Вроде бы стационарное крыло и не машет, как птичье, но всё-таки сказать, что оно не машет совсем — значит соврать. Да, самолёты не машут для того, чтобы создать подъёмную силу, это за него делает аэродинамическое крыло и набегающий поток воздуха.

Если вы полетите в самолёте и ваши места будут рядом с крыльями, обратите внимание — крылья как будто бы дышат, чуть качаются и изгибаются верх и вниз. Может даже показаться, что с крылом какие-то проблемы

На самом деле, никаких проблем нет, эти движения — работа крыла, необходимость. Так крылья самолёта приспосабливаются к набегающему потоку воздуха, завихрениям, нагрузкам от работающего двигателя.

Проектировка крыла учитывает все нагрузки, которые может испытывать самолёт в воздухе. Сами материалы подбираются таким образом, чтобы будущая конструкция выдерживала любой режим полёта.

Выходит, что самолёт всё же машет крыльями, но по-своему и для других целей. И так у любой модели самолёта. Отличаться может только амплитуда колебаний — на одним моделях эти «взмахи» видны невооруженным глазом, некоторые пассажиры не на шутку пугаются, видя эти взмахи. В других моделях почувствовать колебания могут только приборы.

Контекст: откуда взялась эта теория заговора

Конспирологическая теория возникла в 1990-х, когда активно стала обсуждаться возможность влияния на погодные условия с помощью распыления определённых веществ в стратосфере/ионосфере. Согласно конспирологам, с середины 1990-х годов правительство (обычно называется правительство США, но иногда заявляется и сговор с другими правительствами) использует самолеты гражданской авиации для тайного опрыскивания земного шара химическими агентами с целым рядом предполагаемых целей, включая изменение погоды, контроль сознания, испытания химического/биологического оружия, манипулирование ценами акций путем нанесения ущерба урожаю, и (это как раз то, что мы сейчас наблюдаем) распространения болезней.

Еще в 2011 году опрос, проведенный в США, Канаде и Великобритании, показал, что 16,6% респондентов верили в теорию химических трасс.

Сторонники теории заговора предлагают различные объяснения. По мнению одних, это попытка контролировать глобальное потепление, в то время как другие ссылаются на гораздо более зловещие цели, такие как контроль населения, психологические манипуляции и испытания биооружия. 

«Теория» не раз опровергнута учёными и научными данными

В связи с распространением теории, правительству США пришлось защищаться. Информационный бюллетень EPA и других федеральных агентств, таких как Федеральное авиационное управление и Национальное управление океанических и атмосферных исследований были опубликованы на сайте агентства по охране окружающей среды США.

Aircraft-Contrails-Factsheet-1

Что написано в документе?

Aircraft-Contrails-FactsheetБюллетень можете скачать здесь

Естественно, это мало успокоило конспирологов. Подключились учёные. В исследовании, проведенном в 2016 году Институтом науки Карнеги и Калифорнийским университетом в Ирвине, было опрошено 77 ведущих исследователей атмосферы и геохимиков. Все, кроме одного, сказали о невозможности секретной крупномасштабной программы атмосферного распыления. Лишь один ученый зафиксировал необычно высокий уровень атмосферного бария в отдаленном районе с низким уровнем бария в почве. Но чтобы перейти от этого одного результата к идее, что нас тайно опрыскивают химическими веществами, требуется отринуть все законы логики и науки.

Что за самолёт изображён на обложке видео?

Это самолёт участвовавший в тушении пожаров. На территории Чили были лесные пожары в конце 2016 и в начале 2017 года. Тогдашний президент страны, Мишель Бачелет, заявила, что «это были худшие пожары за всю историю Чили». Впервые самолет был использован в Израиле, где помогал справиться с лесными пожарами в ноябре 2016 года, и активно помог Чили: меньше чем за неделю количество активных пожаров удалось сократить с 70 до 32.

747 Global SuperTanker, третий из когда-либо построенных и единственный активный на сегодняшний день, использует фюзеляж 747-400 для хранения порядка 20 000 галлонов (примерно 75 800 литров) воды или антипирена. Такой объем жидкости, сброшенной с высоты в 180 метров, может помочь погасить даже самый мощный лесной пожар.

Влияние реактивных потоков на полеты

Любой трансатлантический маршрут будет отличаться по продолжительности полета. Долететь из Северной Америки в Европу всегда будет быстрее, чем в обратном направлении. Это фактор влияния струйных потоков (западных ветров). С попутным ветром лететь быстрее, чем навстречу мощному воздушному течению.

Опытные летчики, летящие на восток, снижают скорость и экономят горючее. Самый сильный поток наблюдается с января по февраль. В это время разница температур между экватором и Северным полюсом достигает максимальной отметки. Именно в этот период продолжительность полета из Европы в Северную Америку будет наиболее продолжительной, а в обратном направлении самой короткой. Разница во времени может составить до полутора часов.

Как летают авиалайнеры

Отвечая на вопрос, почему летают самолеты, следует вспомнить закон физики. Разница давлений воздействует на подъемную силу крыла.

Поэтому, если скорость авиалайнера большая, то его крылья приобретают подъемную силу, которая толкает воздушное судно.

Еще на подъемную силу крыла авиалайнера влияют некоторые обстоятельства: угол атаки, скорость и плотность потока воздуха, площадь, профиль и форма крыла.

Современные лайнеры имеют минимальную скорость от 180 до 250 км/час, при которых осуществляется взлет, планирует в небесах и не падает.

Высота полета

Какая же предельная и безопасная высота полета самолета.

Не все суда имеют одинаковую высоту полета, «воздушный потолок» может колебаться на высоте от 5000 до 12100 метров. На больших высотах плотность воздуха минимальная, при этом лайнер достигает наименьшего сопротивления воздуха.

Двигателю лайнера необходим фиксированный объем воздуха для сжигания, потому как двигатель не создаст нужной тяги. Также, при полетах на большой высоте, самолет экономит топливо до 80% в отличие от высоты до километра.

За счет чего самолет находится в воздухе

Чтобы ответить, почему самолеты летают, необходимо поочередно разобрать принципы его перемещения в воздухе. Реактивный авиалайнер с пассажирами на борту достигает несколько тонн, но при этом, легко взлетает и осуществляет тысячекилометровый перелет.

На движение в воздухе влияют и динамические свойства аппарата, конструкции агрегатов, формирующие полетную конфигурацию.

Силы, влияющие на движение самолета в воздухе

Работа авиалайнера начинается с запуска двигателя. Небольшие суда работают на поршневых двигателях, вращающих воздушные винты, при этом создается тяга, помогающая воздушному судну перемещаться в воздушном пространстве.

Большие авиалайнеры работают на реактивных двигателях, которые в процессе работы выбрасывают много воздуха, при этом реактивная сила приводит летательный аппарат к движению вперед.

Почему же самолет взлетает и находится долгое время в воздухе? Так как форма крыльев имеет разную конфигурацию: сверху округлая, а снизу плоская, то поток воздуха с обеих сторон не одинаковый. Сверху крыльев воздух скользит и становится разреженным, а давление его меньше, чем воздух снизу крыла. Потому, посредством неравномерного давления воздуха и форме крыльев, возникает сила, приводящая к взлету самолета вверх.

Но чтобы авиалайнер мог легко оторваться от земли, ему необходимо на высокой скорости совершить разбег по взлетной полосе.

За счет чего взлетает самолет: что ему помогает?

Ключевой поверхностной конструкций самолета являются крылья с верхней выпуклой частью и плоской нижней. Благодаря их особенной форме движение самолета на большой скорости превращает воздушный поток в несущую силу. Нижняя часть профиля самолета оставляет воздушный поток неизменным

При контакте с верхней частью поток воздуха сужается.

Конструкция крыльев имеет самое важное значение для самолета. От их способности выдерживать большую нагрузку зависит безопасный перелет человека.
Согласно закону Бернулли из физики – большая скорость воздушного потока приводит к низкому давлению и наоборот

Если применить данное правило к самолету, то получаем что под крылом давление воздуха значительно выше, чем над его поверхностью. За счет чего и взлетает самолет.

Начало движения самолета начинается за счет авиационного двигателя. С помощью силы тяги развивается определенная скорость. В результате образуется подъемная сила, которая влияет на крыло, а следом и на весь самолет.

Описание

  • Как только сила начинает превосходить вес самолета, он начинает взлетать в воздух. При равнозначном значении данных параметров летательный аппарат выравнивается в горизонтальное положение.
  • Подняться самолету в воздух помогает закон физики. Чтобы крылья запарили в воздухе, необходимо создать разницу давлений. Для взлета пассажирского лайнера необходимо развить скорость свыше 180 км/час.
  • Для полноценного разбега большегрузного самолета требуется длинная взлетно-посадочная полоса. Авиалайнер должен набрать максимальную взлетную скорость. Как только достигается нужная быстрота, происходит отрыв от земли и поднимается в воздух самолет.

Для отрыва самолета от земли важны такие показатели как форма и профиль крыла, угол атаки, плотность и скорость воздушного потока

Важное значение имеет высота полета, которая для разных самолетов составляет от 5 до 12 тысяч метров. На большой высоте сопротивление воздуха значительно снижается и самолет расходует меньше топлива, чем на высоте до 1000 м.
Соотношение между металлическим крылом и воздушным потоком называют углом атаки

Для отрыва самолета от земли необходим показатель 3-5°. Конструкция крыла представляет собой непропорциональный металлический профиль с выпуклой верхней частью и ровным листом снизу. Прямая нижняя поверхность обеспечивает полноценное движение воздушной массы.

Самолет выдавливает к полету

Предварительные итоги

Это не более, чем конспирологическая теория, основанная на незнании многими людьми законов физики и оптики. Конденсационный (или инверсионный) след в атмосфере может вести себя по-разному в зависимости от высоты и погоды, а сами следы от разных самолётов располагаются в широком коридоре до 10 км над землёй, что игнорируют сторонники теории химтрейлов.

Что касается распыления реактивов с вертолётов — то это зомби-фейк, уже как минимум несколько месяцев обходящий по кругу весь мир.

Состав дезинфицирующего средства, использующегося в Казахстане отнюдь не секрет — это раствор гипохлорита натрия, входящего в состав любого хлорного отбеливателя.

Поделитесь в социальных сетях:ВКонтактеFacebookTwitter
Напишите комментарий