Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.
Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.
Комбинированный турбреактивно-атомный двигатель.
В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.
В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:
- безопасность летчиков во время полета;
- выброс радиоактивных частиц в атмосферу;
- в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.
- Реактивный двигатель: принцип действия и типы
- Как работает турбореактивный двигатель?
- Какими бывают реактивные моторы?
- Прототипы современных авиалайнеров
- Как работает реактивный двигатель?
- Ракетный двигатель
- Реактивные двигатели в космосе
- Разновидности реактивных двигателей
- Шасси
- Принцип действия реактивной силы
- Исторические факты
- Газотурбинные двигатели в промышленности
- Ядерные ракетные двигатели (ЯРД)
- История создания
- Устройство и принцип действия
- Преимущества и недостатки ЯРД
- Как турбореактивные двигатели перемещают летательные аппараты и экранопланы
- Атомный двигатель
- Как работает турбореактивный двигатель
- Экология
- 💥 Видео
Видео:Турбовентиляторный двигатель. Просто о сложномСкачать
Реактивный двигатель: принцип действия и типы
Двигатель, в котором создается сила тяги за счет преобразования внутренней энергии топлива в кинетическую энергию рабочего тела, называется реактивным.
Рабочее тело с большой скоростью выходит из сопла, сообщая ему реактивную силу, направленную в противоположную сторону. Действуя согласно закону сохранения импульса, продукт сгорания топлива и двигатель перемещаются относительно друг друга в противоположных направлениях.
Если надуть воздушный шарик и, не завязывая, отпустить его, то получится простейший реактивный двигатель. Рабочее тело – накачанный в шарик воздух – будет вырываться наружу, заставляя шарик перемещаться в противоположном направлении.
Для работы реактивного двигателя нужны составляющие:
- Топливо.
- Камера сгорания (реактор), в которой внутренняя энергия топлива преобразуется в тепловую энергию рабочего тела.
- Сопла, из которых под давлением вырываются наружу продукты сгорания топлива, сообщая двигателю реактивную тягу.
Бывает двух типов:
- Воздушно-реактивный – тепловая энергия образуется при сгорании топлива в присутствии кислорода.
- Ракетный – работающий в безвоздушном пространстве.
Видео:КАК РАБОТАЮТ АВИАДВИГАТЕЛИ? Вопросы о самолетах, которые задавал себе каждыйСкачать
Как работает турбореактивный двигатель?
Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.
Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.
Схема турбореактивного двигателя.
Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.
В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.
Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.
Видео:Принцип работы турбореактивного двигателяСкачать
Какими бывают реактивные моторы?
В настоящее время существует множество типов реактивных двигателей, поэтому классификация их довольно сложна.
Подобные силовые установки можно разделить на две большие группы:
Ракетный двигатель. Он несет все компоненты для создания рабочего тела, поэтому способен работать в любой среде, в том числе и безвоздушном пространстве.
Благодаря такому принципу работы ВРД имеет большие преимущества перед ракетными двигателями при использовании в пределах земной атмосферы. Любая ракета, кроме топлива, должна нести еще и окислитель, масса которого может в несколько раз превышать вес горючего. В отдельную категорию следует выделить силовые установки, для работы которых используется ядерная или электрическая энергия. С точки зрения энергетической эффективности, химические ракеты уже достигли предела своих возможностей, поэтому для покорения далекого космоса человечеству придется использовать что-то другое.
ВРД можно разделить на две большие группы:
К первой категории относятся устройства, у которых двигатель и тепловая машина не совмещаются в одном агрегате – их условно можно назвать турбовинтовыми. У таких моторов мощность, вырабатываемая турбиной, заставляет вращаться лопасти винта. Именно он создает большую часть тяги (80-85%). У двигателей второй группы тепловая машина и движитель образуют единое целое, а тяга создается за счет газового потока из сопла.
https://www.youtube.com/embed/1LmAKyaa_fU
Во вторую группу входят следующие типы моторов:
- турбореактивный (ТРД);
- турбовентиляторный (ТРД с высокой степенью двухконтурности);
- прямоточный;
- ракетно-прямоточный;
- пульсирующий воздушно-реактивный (ПуВРД).
Видео:Запуск авиационного двигателя в ГАРРАААЖЕЕЕЕ - хотел удивить подписчиков и получил ПРОБЛЕМЫСкачать
Прототипы современных авиалайнеров
В послевоенное время российскими конструкторами были созданы реактивные самолеты, ставшие в дальнейшем прототипами современных авиалайнеров.
И-250, более известный как легендарный МиГ-13, – истребитель, над которым трудился А. И. Микоян. Первый полет был произведен весной 1945 года, на то время реактивный истребитель показал рекордную скорость, достигшую 820 км/час. Запущены были в производство реактивные самолеты МиГ-9 и Як-15 .
В апреле 1945 года впервые в небо поднялся реактивный самолет П. О. Сухого — Су-5, поднимающийся и летающий за счет воздушно-реактивного мотокомпрессорного и поршневого двигателя, расположенного в хвостовой части конструкции.
После окончания войны и капитуляции фашистской Германии Советскому Союзу в качестве трофеев достались немецкие самолеты с реактивными двигателями JUMO-004 и BMW-003.
Видео:Двигатель от ПАССАЖИРНОГО самолета у меня в ГАРАЖЕ - АИ-25Скачать
Как работает реактивный двигатель?
Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона, который гласит: “Любое действие вызывает равное противодействие”.
У реактивного двигателя вместо жидкости применяется воздух. Он создает силу, обеспечивающую движение.
Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:
- компрессора;
- камеры горения;
- турбины;
- выхлопа.
Компрессор состоит из нескольких турбин, которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.
Реактивный двигатель.
Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.
Турбина соединена с компрессором в передней части двигателя, и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования. После этого воздух выходит из него.
Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.
Видео:Работа двухконтурного реактивного двигателяСкачать
Ракетный двигатель
Ракетный двигатель, реактивный двигатель, источник энергии и рабочее тело которого находятся в самом средстве передвижения. Сила тяги в ракетном двигателе возникает в результате преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. В зависимости от вида энергии, преобразующейся в кинетическую энергию реактивной струи, различают химические ракетные двигатели, ядерные ракетные двигатели и электрические ракетные двигатели. Ракетный двигатель – единственный практически освоенный для вывода полезной нагрузки на орбиту Земли и применения в условиях безвоздушного космического пространства тип двигателя. Другие типы двигателей, пригодные для применения в космосе (например, солнечный парус, космический лифт), пока ещё не вышли из стадии теоретической и/или экспериментальной отработки. Ракетные двигатели применяются в катапультируемых креслах всех марок (К-36ДМ, К-36РБ), стартовых ускорителях для сокращения длины взлётно-посадочной полосы. Самолёт с ракетным двигателем называют ракетопланом (первые ракетопланы – He-176; БИ-1; X-1). С началом космической эпохи (1960-е гг.) название стало применяться в том числе и к запускаемым с самолётов-носителей или ракетоносителей суборбитальным гиперзвуковым самолётам и орбитальным (воздушно-космическим) самолётам-космопланам, например: X-15; X-20; орбитальный самолёт «Спираль»; космический корабль многоразового использования «Спейс шаттл»; космический корабль многоразового использования «Буран», SpaceShipOne и SpaceShipTwo – первые частные суборбитальные ракетопланы, ракетоплан-космоплан Boeing X-37 и т. д.
Характеристикой эффективности ракетного двигателя является удельный импульс (в двигателестроении применяют характеристику удельная тяга) – отношение количества движения, получаемого ракетным двигателем, к массовому расходу рабочего тела. Удельный импульс имеет размерность м/c, то есть размерность скорости. Для ракетного двигателя, работающего на расчётном режиме (при равенстве давления окружающей среды и давления газов на срезе сопла), удельный импульс численно равен скорости истечения рабочего тела из сопла. Ракетные двигатели относятся к двигателям прямой реакции, которые используют для работы только вещества, имеющиеся на ЛА; в качестве А. д. практического применения не нашли.
Видео:Авиационные двигатели уже достигли предела совершенства!?Скачать
Реактивные двигатели в космосе
После освоения неба человечество поставило перед собой задачу покорить космос.
Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.
Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?
В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.
Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.
Видео:Как устроен и работает ФОРСАЖ на самолете?Скачать
Разновидности реактивных двигателей
Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру — урана.
Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.
Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.
Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.
, для нас это очень важно:
Видео:Как устроен турбореактивный двигатель самолёта ?Скачать
Шасси
Еще один важный элемент конструкции любого самолета — шасси. Оно служит для передвижения аэроплана по земле или воде при рулении, взлете и посадке.
Шасси может быть колесным, лыжным и поплавковым. Существуют три основные схемы расположения шасси: с хвостовым колесом, с передним колесом и велосипедного типа. В первом случае две главные опоры находятся ближе к передней части, а вспомогательная, хвостовая, — сзади. Во втором случае главные опоры расположены ближе к задней части, а в носовой части находится переднее колесо.
Что касается шасси велосипедного типа, то одна главная опора находится в передней части фюзеляжа, вторая — в задней, а две вспомогательные крепятся обычно на крыльях. Схема расположения лыжного шасси идентична, с той лишь разницей, что вместо колес используются лыжи. А вот с поплавковым шасси все немного по-другому.
Существуют следующие типы гидросамолетов: поплавковые, летающие лодки и самолеты-амфибии.
У поплавковых самолетов две основных схемы расположения шасси: первая — два основных поплавка крепятся по бокам фюзеляжа, вторая — основной поплавок крепится к фюзеляжу, а два вспомогательных — к крыльям.
У летающей лодки роль основного поплавка выполняет сам фюзеляж, имеющий форму лодки, а вспомогательные поплавки крепятся к крыльям.
Самолет-амфибия — это та же летающая лодка, но кроме поплавкового шасси у нее есть убирающееся колесное шасси.
Рассмотрим устройство колесного шасси более подробно.
Шасси современного самолета состоит из:
- амортизационной стойки, которая обеспечивает плавность хода при взлете и передвижении самолета по аэродрому, а также смягчает удары при посадке;
- бескамерных пневматических колес, снабженных тормозами;
- тяг, раскосов и шарниров, которые служат для уборки и выпуска шасси и через которые амортизационные стойки крепятся к крылу.
Для достижения хороших летных характеристик у большинства самолетов шасси после взлета убираются в фюзеляж либо крыло. Исключение составляют небольшие и тихоходные машины. Но даже неубирающиеся шасси закрывают обтекателями для снижения аэродинамического сопротивления.
Видео:Работника аэропорта засосало в двигатель самолета. Чудовищная историяСкачать
Принцип действия реактивной силы
Если вам доводилось стрелять из огнестрельного оружия, или хотя бы наблюдать процесс со стороны, вы уже сталкивались с реактивной силой. Именно струя раскаленных газов, образовавшихся при сгорании пороха, отталкивает ствол назад. Чем больше количество заряда, тем круче отдача. А теперь представьте, что процесс воспламенения смеси постепенен и непрерывен. Получаем ракету с твердотопливным РД. Это самый простой вид двигателя, хорошо знакомый ракетомоделистам.
В качестве топлива в РДТТ сначала использовали дымный порох, более сложные варианты уже имеют основу в виде нитроцеллюлозы, растворенной в нитроглицерине. Топливом для небольших ракет выступает натриевая или калиевая селитра, смешанная с углеводами типа сахара или сорбита. Сделать такой движок можно самостоятельно, можно найти готовую модель и топливо в продаже. Большие твердотопливные двигатели использовались для запуска ракет, выводивших на орбиту шаттлы (характерный густой оранжевый дым при запуске ракеты дают именно такие двигатели), а также в военных целях для МБР. У них топливом выступает смесь полимерного горючего и перхлорат аммония как окислитель. Знаменитый «Тополь-М» основан именно на твердотопливных двигателях.
Твердотопливные двигатели относительно простые в конструкции, имеют нетоксичное топливо, надежные и пожаробезопасные, могут долго храниться, представляя собой стратегический арсенал. Однако удельный импульс у них небольшой, ими трудно управлять (включая не только направление тяги, но и запуск, а также остановку двигателя), а потому для космических полетов более предпочтительны ракетные двигатели на куда более эффективном жидком топливе.
Это интересно: Кто придумал самолет на солнечных батареях
Видео:Микро реактивный двигательСкачать
Исторические факты
Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.
Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.
Видео:Как работает реверс в самолете?Скачать
Газотурбинные двигатели в промышленности
При нефтедобыче и переработке активно используются также газотурбинные двигатели. Газотурбинный двигатель представляет собой сложную установку – это тепловое оборудование, внутри которого газ сжимается, затем нагревается, а затем энергия сжатого и нагретого газа создает вращение турбины. Такие двигатели лучше поршневых, так как все процессы в них более эффективны благодаря тому, что они происходят в потоке движущегося газа.
Принцип действия газотурбинного двигателя сводится к тому, что из компрессора воздух подается в камеру сгорания, затем туда же подается топливо. В камере сгорания образуются газообразные продукты разного вида, находятся они под давлением. После этого в турбине двигателя энергия газообразных продуктов создает механическую работу, и турбина начинает вращаться. Полезной работой двигателя считается работа, которая выполняется приводимым агрегатом.
Преимуществом газотурбинного двигателя можно назвать то, что он обладает самой большой мощностью, она может достигать 6 кВт/час. Это наибольший показатель среди аналогов. Кроме того, такой агрегат способен работать с разными видами топлива – бензином, керосином, мазутом, природным газом, спиртом или измельченным углем. Данное оборудование широко применяется в сфере нефте- и газодобычи.
Видео:Всё о Ракетных двигателях. Часть 1Скачать
Ядерные ракетные двигатели (ЯРД)
Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.
История создания
Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.
Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.
Устройство и принцип действия
Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.
Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.
Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.
Преимущества и недостатки ЯРД
Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.
Видео:Колибри Т32 - маленький турбореактивный двигательСкачать
Как турбореактивные двигатели перемещают летательные аппараты и экранопланы
Представьте себе ситуацию, будто вы сидите посреди большой пустой комнаты на стуле с колесиками, но дотянуться ногами до пола не можете, и предметов вокруг, от которых можно оттолкнуться тоже нет, а вам нужно как-то переместиться в сторону выхода. Задача эта совершенно не решаема, если у вас нет при себе никаких предметов, включая одежду. Но если при вас есть хоть что-то, обладающее массой, вы можете со всей силы отбросить это в сторону, противоположную выходу. Удивительным образом стул двинется в сторону выхода, и если вдруг в кармане вы обнаружите пару гантелей или гирю, особых проблем с путешествием не будет.
Главный принцип здесь заключается в следующем: если мы бросаем какой-либо предмет в сторону, на нас действует точно такая же сила, как и на предмет, только противоположно направленная. Если мы хотим кинуть волейбольный мяч, придав ему ускорение рукой, то наша рука почувствует удар — это и есть та сила, действующая в противоположном полету мяча направлении. Поскольку мяч гораздо легче, чем человек, он вынужден отлететь на большое расстояние, при приложенной силе. Но если с той же силой удара, что приложена к мячу, долбануть по гире, которая всего в четыре раза легче человека, то сила удара уже заставит кости сломаться.
Когда человечество получило доступ к поршневым двигателям высокой на тот момент мощности, пришла идея создания летательных аппаратов, известных ныне как самолеты. На валу поршневого движка внутреннего сгорания устанавливался винт с лопастями, отбрасывающий большой объем воздуха, в противоположном полету направлении. Однако скорость полетов на ДВС с воздушным винтом была весьма ограничена, а растущей индустриализации требовались все большие скорости, и тогда вспомнили про газовую турбину.
Движение летательного аппарата с турбореактивными двигателями происходит за счет отбрасывания двигателем газовой смеси с высокой скоростью и в большом объеме, в противоположную движению самолета сторону. Все довольно просто. Воздух — это газовая смесь, и каждый газ, входящий в данную смесь, обладает массой, плотностью, объемом и температурой. Реактивная сила, создаваемая двигателем, зависит от скорости истекания газовой струи и ее массе (или объема при заданной плотности). Чем выше любой из множителей, тем выше сила отталкивания самолета в противоположном направлении.
Видео:Посмотрите, Как Тестируют Турбины Самолета на Самом ДелеСкачать
Атомный двигатель
В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.
В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.
В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.
Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:
- Пилоты были подвержены постоянному радиоактивному облучению на протяжении всего полета.
- Вместе с воздухом через сопла выходили и частички радиоактивного элемента в атмосферу.
- В том случае если самолет терпел крушение, был очень большой шанс взрыва радиоактивного реактора, что влекло за собой радиоактивное отравление на довольно большой площади.
Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.
Видео:Как Эта Спираль Спасает Жизни?Скачать
Как работает турбореактивный двигатель
Если реактивный двигатель в наше время — дело обычное, то турбореактивный встречается не так часто. Ими оборудуют крупные пассажирские самолёты.
Главное отличие этих двух видов двигателей: для реактивного нужен не только запас горючего, но и окислитель, то есть воздух, который подаётся из топливных баков. Турбореактивный «тащит» на себе и без того нелёгкий груз, поэтому устроен так, что воздух он захватывает с помощью лопастей турбины из атмосферы, поэтому лайнер нужно загрузить только топливом.
Далее принцип работы турбореактивного двигателя ничем не отличается от реактивного.
Видео:Как устроен турбореактивный двигатель. 3D анимация MozaikСкачать
Экология
Безусловно огромный плюс в практическом применении наших установок, это минимальное количество вредных примесей в выбросах., что позволяет строить ГТУ вблизи места проживания населения.
Не нужно строить дымовые трубы и тратиться на приобретение катализаторов.
Стоимость газотурбинных установок высока, о если поближе познакомиться с этими установками, их техническими характеристиками, стоит задуматься на нашим выгодным предложением.
На старте энергетических проектов высокие капиталовложения полностью компенсируются при последующей эксплуатации незначительными расходами. Значительное уменьшение платежей по экологии, уменьшены платежи за электроэнергию и тепловую энергию.
Ежегодно у нас приобретают и устанавливают сотни новых газотурбинных установок.
Получите информацию по стоимости микрогазовой турбины МГТУ мощностью 60-200 кВт, связавшись с нашим отделом продаж по телефону +7 (351) 737-01-53
💥 Видео
Этим запускают самолетный двигатель ВСУ АИ-9Скачать
Поршневые и турбовинтовые двигатели | в чем разница?Скачать
НЕВЕРОЯТНЫЙ Тест Реактивных ДвигателейСкачать